Journal of Biology Science and Education (JBSE)

http://jurnal.fkip.untad.ac.id

Vol. 8, No. 1, Hal. 602-609, Januari-Juni, (2020)

Efektivitas Ekstrak Daun Jambu Biji (*Psidium guajava* L.) untuk Menghambat Pertumbuhan Bakteri *Vibrio cholera* dan Pemanfaatannya sebagai Media Pembelajaran Biologi

Eka Gusti Randani, I Nengah Kundera, & Gamar Binti Non Shamdas

Program Studi Pendidikan Biologi, Universitas Tadulako, Indonesia

Received: 20 Des 2019; Accepted: 25 Des 2019; Published: 5 Jan 2020

ABSTRAK

Vibrio cholerae merupakan salah satu jenis bakteri yang berbahaya dan bersifat patogen bagi manusia karena dapat menimbulkan infeksi usus yaitu diare. Daun jambu biji daging buah putih mengandung senyawa tannin, flavonoid dan alkaloid yang bersifat sebagai antibakteri. Penelitian ini bertujuan untuk mengetahui efektivitas ekstrak daun jambu biji daging buah putih (*Psidium guajava* L.) dalam menghambat pertumbuhan bakteri *Vibrio cholerae* serta menjadikan hasil penelitian ini sebagai media pembelajaran dalam bentuk poster. Metode yang digunakan adalah eksperimen. Teknik yang digunakan adalah teknik sumur, teknik pengenceran dan perhitungan koloni. Parameter amatan adalah diameter zona hambat, perubahan warna yang terbentuk pada tiap tabung pengenceran dan jumlah koloni bakteri. Penelitian menggunakan rancangan acak lengkap (RAL) dengan 5 perlakuan (100%, 75%, 50%, 25% dan 0%) dan 4 kali ulangan. Hasil penelitian menunjukan bahwa ekstrak daun jambu biji efektif menghambat pertumbuhan bakteri *Vibrio cholerae* dengan *Minimum Inhibitory Concentration* (MIC) pada konsentrasi 25%, sedangkan pada konsentrasi 75% bersifat Bactericidal. Hasil penelitian ini dijadikan poster yang telah divalidasi oleh ahli isi, ahli media dan ahli desain sehingga layak menjadi media pembelajaran

Kata Kunci: Ekstrak; Daun jambu biji; Vibrio chloreae; Media pembelajaran

The Effectiveness of Guava Leaf Extract (*Psidium guajava* L.) to Inhibit the Growth of Vibrio cholera Bacteria and Its Utilization as a Biology Learning Media

ABSTRACT

Vibrio cholerae is a type of bacteria that is harmful and pathogenic to humans because it can cause intestinal infections, namely diarrhea. Guava leaves with white flesh contain tannins, flavonoids and alkaloids which have antibacterial properties. This study aims to determine the effectiveness of guava leaf extract white fruit flesh (*Psidium guajava* L.) in inhibiting the growth of Vibrio cholerae bacteria and obtain a minimum concentration in inhibiting the growth of Vibrio cholerae bacteria and make the results of this study as a learning media in the form of posters. The method used is experimental. The technique used is the well technique, dilution technique and colony calculation. Parameters observed were the diameter of the inhibition zone, the color change formed in each dilution tube and the number of bacterial colonies. The study used a completely randomized design (CRD) with 5 treatments (100%, 75%, 50%, 25% and 0%) and 4 replications. The results showed that guava leaf extract was effective in inhibiting the growth of Vibrio cholerae bacteria with a Minimum Inhibitory Concentration (MIC) at a concentration of 25%, while at a concentration of 75% it was Bactericidal. The results of this study are used as posters that have been validated by content experts, media experts and design experts so that they are worthy of being learning media

Keywords: Extract; Guava leaves; Vibrio chloreae; Instructional Media

Copyright © 2020 Eka Gusti Randani, I Nengah Kundera, & Gamar Binti Non Shamdas

OPEN ACCESS

Corresponding author: Eka Gusti Randani, Program Studi Pendidikan Biologi, Universitas Tadulako, Indonesia.

Email: ekagustirandani9@gmail.com

PENDAHULUAN

Penyakit infeksi merupakan penyakit yang banyak diderita masyarakat Indonesia sejak dulu, diantaranya adalah infeksi usus (diare). Diare gejala klinis adalah suatu dari gangguan ditandai pencernaan (usus) dengan yang bertambahnya frekuensi defekasi lebih dari biasanya dan berulang-ulang yang disertai adanya perubahan bentuk dan konsistensi feses menjadi lembek atau cair. Salah satu faktor penyebab terjadinya diare antara lain karena infeksi kuman penyebab diare. Menurut (Dzulkarnain dkk,1996) bahwa kasus diare di Indonesia lebih sering disebabkan oleh Staphylococcus aureus. Escherichia coli, Vibrio cholerae, Salmonella sp., selain Shigella sp., dan Campylobacter.

Bakteri *Vibrio cholerae* termasuk bakteri gram negatif, berbentuk batang bengkok seperti koma dengan ukuran panjang 2-4 µm. Koch menamakan bakteri ini dengan "kommabacillus". Bakteri ini dapat bergerak sangat aktif karena mempunyai satu buah flagellum halus pada ujungnya (*Monotrikh*). Karakteristik morfologi lain dari bakteri ini antara lain, tidak membentuk spora, bentuk koloninya cembung (*Convex*), *Opaque*, dan bergranul bila disinari (Matson *et al*, 2007).

Vibrio cholerae dapat menimbulkan wabah kolera di negara berkembang yang memiliki tingkat sanitasi dan higiene yang buruk termasuk Indonesia. Gejala yang ditimbulkannya meliputi muntah, buang air besar seperti air beras dalam iumlah banyak liter/jam) (1 sehingga mengakibatkan dehidrasi, kehilangan elektrolit dan naiknya keasaman darah. Pada kasus yang berat, penderita kehilangan cairan serta elektrolit dengan cepat dan banyak sehingga terjadi renjatan keasaman metabolik dan bila tidak diobati akan menyebabkan kematian (Soemarsono, 1996). Vibrio cholerae merupakan suatu jenis bakteri yang berbahaya dan bersifat patogen bagi manusia.

Sejak zaman dahulu masyarakat Indonesia mengenal dan memakai tanaman berkhasiat obat sebagai salah satu upaya dalam penanggulangan masalah kesehatan yang dihadapi, jauh sebelum pelayanan kesehatan formal dengan obat-obatan modern. Pengetahuan tentang tanaman berkhasiat obat-obatan merupakan warisan budaya bangsa berdasarkan pengalaman secara turun temurun. Manoi dan Nova (2008), menyatakan bahwa salah satu tanaman yang digunakan secara empirik sebagai obat adalah tanaman jambu biji dengan kandungan kimia yaitu tannin 9-12% yang berkhasiat sebagai antidiare dengan cara mempresipitasi protein pada dinding sel bakteri, sehingga dapat menghambat pertumbuhannya.

Berdasarkan pengalaman masyarakat menggunakan daun jambu biji sebagai obat antidiare dan didukung oleh hasil penelitian tentang kandungan senyawa aktif pada daun jambu biji yang berfungsi sebagai antidiare maka perlu melakukan penelitian kemampuan antidiare ekstrak daun jambu biji.

Media pembelajaran merupakan perangkat yang membawa pesan dan materi yang ingin disampaikan pada proses pembelajaran, yang bertujuan untuk mencapai proses pembelajaran. (Riyana, 2012). Poster dapat dijadikan salah satu media pembelajaran karena dapat menarik perhatian banyak orang, model/bentuknya lebih bervariasi, berwarna, isi lebih ringkas membahas ketujuan pokok dari pesan sehingga pesan yang disampaikan dapat diterima orang lain dengan mudah. Kegunaan poster dalam pengajaran sebagai pendorong atau memotivasi kegiatan belajar. Oleh karena itu hasil penelitian ini akan informasi dijadikan sebagai ilmiah dituangkan kedalam poster sebagai media pembelajaran.

METODE

Penelitian ini menggunakan dua variabel yaitu variabel bebas dan variabel terikat, variabel bebas adalah konsentrasi ekstrak daun jambu biji dan variabel terikat adalah pertumbuhan bakteri uji *Vibrio cholerae* Sedangkan parameter amatan berupa zona bening sebagai zona hambat pada teknik sumur, kekeruhan pada teknik pengenceran serta pertumbuhan koloni bakteri pada teknik hitung koloni.

Sterilisasi Alat

Semua alat yang digunakan dicuci bersih, kemudian dikeringkan. Tabung reaksi dan Erlenmeyer disumbat dengan kapas, kemudian dibungkus dengan aluminium foil. Jarum ose dan cawan dibungkus dengan kertas buram. Setelah itu semua peralatan tersebut disterilkan dalam oven dengan suhu 160°C selama 2 jam.

Pembuatan Ekstrak Daun Jambu Biji

Daun tanaman jambu biji yang dikumpulkan adalah daun muda dengan ciri-ciri permukaan daun agak kasar, tidak mengkilap dan berwarna hijau muda. Semua daun yang terkumpul dicuci dan disortasi. Daun jambu biji yang telah dibersihkan, kemudian dikering anginkan selama 4 hari. Daun jambu biji ditimbang sebanyak 427,76 gram untuk dihaluskan dengan menggunakan blender, selanjutnya sampel dimasukan ke dalam 1500 ml metanol. Kemudian diletakan di atas *shaker* selama 3 hari sampai berubah menjadi kecoklat-coklatan. Selanjutnya massa disaring dan dimasukan ke dalam erlenmeyer dengan menggunakan corong penyaring. Massa kemudian dimasukan ke dalam rotavator untuk dipisahkan antara pelarut dan ekstrak, sehingga diperoleh ekstrak cair. Larutan ekstrak kemudian dievaporasi pada tekanan (5mm/hg) pada suhu tidak lebih dari 50°C sehingga diperoleh ekstrak kental berkonsentrasi 100% (Johnson and Case, 1999).

Pembuatan Pengenceran Ekstrak Daun Jambu Biji

Ekstrak daun jambu biji yang diuji daya hambatnya berdasarkan konsentrasi tertentu dibuat pengenceran dengan menggunakan persentasi pengenceran sesuai standar National Comite for Clinical Laboratory Standars (NCCLS) sebagai berikut : 100%, 75%, 50%, 25% dan 0% sebagai control negatif. Konsentrasi 100% dibuat dengan cara mengambil 10 ml ekstrak murni daun jambu biji tanpa dicampur dengan aquades. Sedangkan untuk membuat konsentrasi 75% yaitu dengan mencampurkan 7,5 ml ekstrak daun jambu biji dengan 2,5 ml aquades, 5 ml ekstrak daun jambu biji dicampurkan dengan 5 ml aquades (konsentrasi 50%), 2,5 ml ekstrak daun jambu dicampurkan dengan 7,5 ml aquades (konsentrasi 25%) dan 10 ml aquades steril tanpa ditambahkan ekstrak (konsentrasi 0%) sebagai kontorl negatif (Johnson and Case, 1999).

Pembuatan Suspensi Bakteri

Bakteri uji yang digunakan dalam penelitian ini adalah biakan murni, yang diperoleh dari

Laboratorium Kesehatan Kota Palu. Bakteri *Vibrio cholerae* yang digunakan, sebelumnya dilakukan peremajaan kembali (subkultur) pada medium MHA miring, diinkubasi selama 24 jam pada suhu 35°C. Koloni hasil peremajaan suspensi bakteri uji dalam larutan NaCl fisiologis, selanjutnya digunakan sebagai bakteri uji (Johnson and Case, 1999).

Teknik Sumur

Teknik pengujian kepekaan bakteri terhadap ekstrak daun jambu biji yaitu melalui teknik sumur dengan menggunakan medium Mueller Hinton Agar (MHA). Erlenmeyer yang berisi 3,04 g MHA ditambahkan 80 ml aquades, dipanaskan pada penangas listrik (hotplate) dengan suhu 40°C sampai agar dalam tabung erlenmeyer mencair. Setelah agak dingin, lalu dituang ke dalam cawan petri yang steril ±4 mm yang telah berisi 1 ml suspensi bakteri uji, selanjutnya dihomogenkan dengan cara menggoyangkan di atas meja membentuk angka 8 dan disimpan pada tempat rata sampai agak keras atau dingin. Lalu, membuat sumur atau lubang dengan pipa pelubang khusus diameter 8 mm. Setiap cawan petri dibuat 5 lubang dengan jarak yang sama dan tidak terlalu rapat agar zona bening yang terbentuk pada masing-masing sumur tidak saling tindih.

Pada tiap-tiap tabung diberi 0,2 ml dari masing-masing konsentrasi ekstrak daun jambu biji. Inkubasi pada suhu 35°C selama 24 jam. Setelah itu diukur zona hambat pertumbuhan bakteri dengan menggunakan jangka sorong (Johnson dan Case, 1999).

Teknik Pengenceran

Teknik pengenceran merupakan teknik penduga bertujuan untuk mengetahui adanya pertumbuhan bakteri, tetapi pada teknik ini belum diketahui jumlah bakteri yang ada maka dilanjutkan pada teknik hitung koloni. Teknik pengenceran digunakan untuk menentukan Minimum Inhibitory Concentration (MIC) dan Minimum Bactericidal Concentration (MBC).

Teknik ini menggunakan 9 tabung reaksi yang berisi 1 ml *Mueller Hinton Broth* (MHB) steril. Pada tabung pertama ditambahkan 1 ml ekstrak daun jambu biji (konsentrasi 100%), lalu homogenkan. Kemudian dari tabung pertama

diambil 1 ml untuk dipindahkan ke tabung ke-2 dan dari tabung ke-2 diambil 1 ml untuk dipindahkan ke tabung ke-3 dan seterusnya sampai tabung ke-8. Namun pada tabung ke-8, dibuang 1 ml agar volumenya sama. Tabung ke-9 tidak diberi ekstrak daun jambu biji (sebagai kontrol bakteri uji). Dengan demikian, dari tabung ke-1 sampai ke-8 memiliki konsentrasi berturutturut 100%, 75%, 50%, 25%, 12,5%, 6,25%, 3,125% dan 1,563%. Pada tabung 1, 2, 3, 4, 5, 6, 7, 8 dan 9 diisi dengan 1 ml suspensi bakteri uji. Kemudian diinkubasi selama 24 jam pada suhu 37°C. Pada tabung yang tampak bening menandakan tidak adanya pertumbuhan bakteri (Johnson and Case, 1999).

Teknik Perhitungan Koloni

Perhitungan koloni dilakukan dengan cara mengambil 1 ml dari masing-masing tabung pada teknik pengenceran dan dimasukan ke dalam cawan petri lalu ditambahkan medium *Mueller Hinton Agar* (MHA) dan diinkubasikan selama 24 jam pada suhu 35°C. Setelah itu dilakukan perhitungan koloni dengan menggunakan alat penghitung koloni (*Colony Counter*) (Johnson and Case, 1999).

Jenis dan Sumber Data Jenis Data

Jenis data dalam penelitian ini adalah data kuantitatif berbentuk angka. Sesuai dengan kriterianya data kuantitatif bisa diolah dan dianalisis dengan menggunakan teknik perhitungan statistika.

Sumber Data

- 1) Data primer merupakan data yang didapat atau dikumpul oleh peneliti dengan cara langsung dari sumbernya. Parameter pada penelitian ini yaitu diameter zona hambat pertumbuhan bakteri, perubahan warna yang terbentuk pada tiap tabung pengenceran bakteri dan jumlah koloni bakteri *Vibrio cholerae* menggunakan teknik hitung koloni.
- 2) Data sekunder merupakan data yang didapat peneliti dari semua sumber yang sudah ada.

Teknik Pengupulan Data

Teknik pengumpulan data pada penelitian ini yaitu dengan cara mengamati, mengukur,

menghitung dan membuat tabulasi data atau menyajikan data.

Teknik Analisa Data

Gomez dan Gomez (1995) data yang diperoleh diolah secara statistik melalui analisis varian (ANAVA) dengan model matematika

$$Yij = \mu + \alpha i +$$

Keterangan:

Yij : Angka pengamatan.

i : Perlakuanke-i (1, 2, 3, 4, 5).
j : Ulangan kerja ke-j (1, 2, 3, 4).
µ : Nilai rata-rata diseluruh perlakuan.

αi : Pengaruh dari perlakuanke-i.

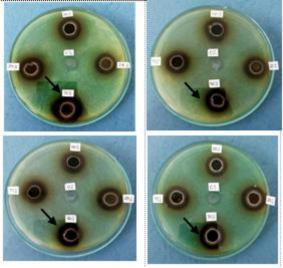
 Σ ij : Galat acak.

Pembuatan media pembelajaran berupa poster terlebih dahulu dilakukan dengan mendesain poster yang kemudian dilanjutkan dengan validasi oleh tim ahli, yaitu ahli isi, ahli desain dan ahli media untuk mengetahui kelemahan–kelemahan dari poster tersebut dan selanjutnya diperbaiki.

Desain media pembelajaran yang telah diperbaiki kemudian diuji cobakan kepada mahasiswa Program Studi Pendidikan Biologi. Mahasiswa yang dipilih adalah mahasiswa yang telah memprogram mata kuliah Mikrobiologi Dasar yaitu angkatan 2012 sebanyak 25 orang.

 $Rata-rata = \frac{\text{Jumlah Keseluruhan persentase}}{\text{Jumlah item aspek penilaian}} \times 100$

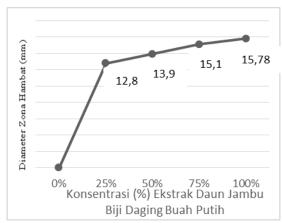
Persentase	Kelayakan Interpertasi
76% - 100%	Layak
56% - 75%	Cukup layak
40% - 55%	Kurang layak
0% - 39%	Tidak layak


(Sumber: Arikunto, 2002).

HASIL DAN PEMBAHASAN

Hasil penelitian efektivitas ekstrak daun jambu biji (*Psidium guajava* L.) terhadap pertumbuhan bakteri *Vibrio cholerae* dengan pengujian menggunakan teknik sumur, teknik pengenceran dan teknik perhitungan koloni diperoleh hasilsebagai berikut:

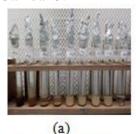
Pengujian Ekstrak Daun Jambu Biji Dengan Menggunakan Teknik Sumur

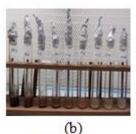

Hasil penelitian menunjukkan zona hambat yang dihasilkan ekstrak daun jambu biji dalam menghambat pertumbuhan bakteri *Vibrio cholerae* dapat dilihat pada Gambar 1.

Gambar 1. Zona Hambat Ekstrak Daun Jambu Biji Dalam Menghambat Pertumbuhan Bakteri Vibrio cholerae

Gambar 1 merupakan hasil pengujian antibakteri ekstrak daun jambu biji daging buah putih (*Psidium guajava* L.) terhadap bakteri *Vibrio cholera* melalui teknik sumur dengan medium MHA yang dilakukan sebanyak 4 kali pengulangan. Setelah diinkubasi selama 24 jam diperoleh kepekaan ekstrak daun jambu biji daging buah putih terhadap bakteri *Vibrio cholerae* yang ditandai dengan zona bening sebagai zona hambat pada sumur yang dibentuk. Pada gambar pengujian melalui teknik sumur menunjukkan bahwa zona hambat yang terbentuk di sekitar sumur terjadi pada konsentrasi 25%, 50%, 75% dan 100%.

Diameter rata-rata zona hambat yang terbentuk dari setiap konsentrasi dapat dilihat pada Gambar 2.




Gambar 2. Grafik diameter rata-rata zona hambat ekstrak daun jambu biji pada pertumbuhan bakteri *Vibrio cholerae*

Gambar 2. memperlihatkan adanya perbe daan diameter zona hambat yang terbentuk pada tiap konsentrasi yang berbeda. Pengujian dengan teknik sumur yang dilakukan sebanyak empat kali pengulangan diperoleh rata-rata luas zona hambat yaitu 12,8 mm untuk konsentrasi 25%; 13,9 mm untuk konsentrasi 50%; 15.1 mm untuk konsentrasi 75% dan 15.78 mm untuk konsentrasi 100%. Hal ini menunjukan bahwa semakin besar konsentrasi ekstrak daun jambu biji semakin luas diameter zona hambat yang terbentuk artinya semakin rendah pertumbuhan bakteri Vibrio cholerae. Keadaan ini menunjukan adanya pengaruh konsentrasi ekstrak daun jambu biji terhadap pertumbuhan bakteri Vibrio cholerae.

Pengujian Ekstrak Daun Jambu Biji Menggunakan Teknik Pengenceran

Hasil pengamatan ekstrak daun jambu biji melalui teknik pengenceran terhadap pertumbuhan bakteri *Vibrio cholerae* dapat dilihat pada Gambar 3.

Sebelum inkubasi

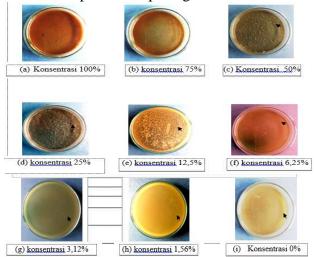
sesudah inkubasi

Gambar 3. Visualisasi Bakteri *Vibrio cholerae* pada Media *Muller Hinton Broth* (MHB)

Gambar 3. memperlihatkan 9 tabung reaksi dalam pengujian efektivitas antibakteri ekstrak daun jambu biji daging buah putih (Psidium guajava L.) terhadap pertumbuhan bakteri Vibrio cholerae pada media Mueller Hinton Broth (MHB) pada saat sebelum inkubasi dan sesudah diinkubasi selama 24 jam. Parameter teknik pengenceran adalah kekeruhanyang terlihat pada sampel uji di dalam tabung reaksi. Hasil pengujian ekstrak daun jambu biji daging buah putih pada pertumbuhan bakteri Vibrio cholerae. menunjukkan terjadinya perubahan kekeruhan dari bening menjadi keruh sesudah dilakukan inkubasi. Sampel uji yang bening pada tabung reaksi setelah diinkubasi mengindikasikan tidak adanya aktivitas mikroba, sedangkan warna keruh mengindikasikan adanya aktivitas mikroba.

Uji yang diperoleh pada tabung pengenceran saat sebelum inkubasi menunjukkan hasil yang tidak begitu jelas akibat warna dari ekstrak daun yang kecoklatan, sehingga pengamatan secara visual pada tabung tersebut tidak terbaca dengan baik untuk membandingkan adanya pertumbuhan bakteri (positif) dan tidak ada pertumbuhan bakteri (negatif) pada tabung, namun terjadi perubahan warna setelah dilakukan inkubasi. Berdasarkan hasil pengamatan pada teknik pengenceran sesudah dilakukan inkubasi, terlihat bahwa tabung ke-1 (konsentasi 100%) dan tabung (konsentasi ke-2 mengalami 75%) tidak perubahan kekeruhan. Perubahan kekeruhan dari bening menjadi keruh terjadi pada tabung ke-3 sampai pada tabung ke-9.

Tabel 1. Hasil pengamatan perubahan warna akibat efektivitas antibakteri ekstrak daun jambu biji daging buah putih (*Psidium guajava* L.) terhadap bakteri *Vibrio cholerae* pada teknik pengenceran.


Konsentrasidalam %								
l	2	3	4	5	6	7	8	9
100%	75%	50%	25%	12,5%	6,25%	3,12%	1,56%	Kontrol Bakteri
-		+	+	+	+	+	+	+
Keterangan : + = Ada Pertumbuhan Bakteri - = Tidak Ada Pertumbuhan Bakteri								

Tabel 1. menunjukkan hasil pengujian dari beberapa konsentrasi ekstrak daun jambu biji terhadap pertumbuhan bakteri *Vibrio cholerae* melalui teknik pengenceran. Adapun hasil pengujian setelah diinkubasi selama 24 jam, terlihat tidak ada pertumbuhan bakteri pada tabung dengan konsentrasi 75% dan 100%, sedangkan dari konsentrasi 50% sampai 0% terlihat ada pertumbuhan bakteri.

Hasil pengamatan melalui teknik pengenceran belum dapat menentukan jumlah koloni bakteri sehingga untuk menghitung jumlah koloni bakteri yang ada pada tabung pengenceran tersebut, maka dilakukan penanaman bakteri pada media MHA dengan pengujian melalui teknik hitung koloni.

Pengujian Ekstrak Jambu Biji Menggunakan Teknik Hitung Koloni

Setelah menentukan ada atau tidaknya pertumbuhan bakteri melalui teknik pengenceran, dilanjutkan dengan mengambil masing-masing 1 ml sampel pada setiap tabung teknik pengenceran untuk menumbuhkan bakteri *Vibrio cholerae* pada medium berisi MHA. Setelelah diinkubasi selama 24 jam, pertumbuhan koloni bakteri *Vibrio cholerae* dapat dilihat pada gambar 4.

Gambar 4. Pertumbuhan Koloni Bakteri Vibrio Colerae pada Medium Mueller Hinton Agar (MHA)

Gambar 4. memperlihatkan 9 cawan petri sebagai tempat pertumbuhan koloni bakteri *Vibrio cholerae* pada media MHA setelah diinkubasi selama 24 jam. Pada cawan yang terdapat konsentrasi 100% (gambar a) dan 75% (gambar b)

tampak tidak ada pertumbuhan koloni bakteri di dalamnya. Adapun pertumbuhan koloni bakteri *Vibrio cholerae*terlihat jelas pada konsentrasi 50%, 25%,12,5%, 6,25%, 3,12%, 1,56%, dan 0%. Hasil perhitungan jumlah koloni bakteri *Vibrio cholerae* berdasarkan teknik hitung koloni dapat dilihat pada tabel 2.

Jumlah koloni bakteri sebagai hasil uji antibakteri ekstrak daun jambu biji (*Psidium guajava* L.) terhadap bakteri *Vibrio cholerae* dengan menggunakan teknik hitung koloni.

Kontroldalam %								
1	2	3	4	5	6	7	8	9
100%	75%	50%	25%	12,5%	6,25%	3,12%	1,56%	0%
0	0	550	670	TBUD	TBUD	TBUD	TBUD	TBUD

Keterangan : TBUD = Terlalu banyak untuk dihitung

Berdasarkan hasil penelitian pada Tabel 2. menunjukkan bahwa ekstrak daun jambu biji daging buah putih (Psidium guajava L.) pada konsentrasi 100% dan konsentrasi 75% tidak ada pertumbuhan koloni bakteri Vibrio cholerae. Pada konsentrasi konsentrasi 50% jumlah koloni bakteri Vibrio cholerae yaitu 550 dan pada konsentrasi 25% jumlah koloni bakteri yaitu 670. Sedangkan pada konsentrasi 12,5% sampai 0% jumlah koloninya semakin meningkat sehingga sulit untuk menentukan jumlah koloni bakteri Vibrio cholerae maka dikategorikan terlalu banyak untuk dihitung (TBUD). Keadaan ini menunjukkan bahwa semakin rendah konsentrasi ekstrak daun jambu biji yang diberikan, semakin banyak koloni bakteri Vibrio cholerae yang tumbuh.

Hasil Analisis Varian

Hasil analisis statistik mengenai data diameter zona hambat sebagai akibat zat antibakteri dari ekstrak daun jambu biji daging buah putih (*Psidium guajava* L.) terhadap pertumbuhan bakteri *Vibrio cholerae* ditunjukkan pada Tabel 3.

Hasil analisis ragam zona hambat ekstrak daun jambu biji terhadap pertumbuhan bakteri *Vibrio cholerae* dengan teknik sumur. Berdasarkan hasil analisis ragam zona hambat terhadap bakteri *Vibrio cholerae* sebagaimana disajikan pada Tabel 4.3 menunjukkan bahwa nilai F hitung \geq F tabel (α = 0,05) dengan db galat 15 yaitu diperoleh hasil F hitung yaitu

325,96 lebih besar dari F tabel 5% yaitu 3,06. Dengan demikian H₀ ditolak maka H₁ diterima artinya ekstrak daun jambu biji efektif dalam menghambat pertumbuhan bakteri *Vibrio cholerae*, dan H₀ yaitu daun jambu biji tidak efektif menghambat pertumbuhan bakteri *Vibrio cholerae* ditolak.

Oleh karena F hitung ≥ F tabel maka analisis dilanjutkan dengan uji beda nyata terkecil (BNT) untuk melihat konsentrasi yang efektif dalam menghambat dan membunuh pertumbuhan bakteri *Vibrio cholerae*. Hasil analisis menggunakan uji BNT dapat dilihat pada Tabel 4.

	Rata-rata		BNT				
Konsentrasi (%)	Perlakuan (mm)	100%	75%	50%	25%	0%	5%
100	15,78	-					1,08
75	15,1	1,68*	-				
50	13,9	1,88*	1,2*	-			
25	12,88	2,2*	2,22*	1,02	-		
0	0	15,78*	15,1*	13,9*	12,88*	-	

*: Berbeda nyata pada taraf 5%.

Berdasarkan data pada Tabel 4, maka diperoleh selisih rata-rata hampir semua perlakuan adalah lebih besar dari nilai BNT 5% kecuali selisih 50% ke 25% yaitu 1,02. Artinya selisih rata-rata antara perlakuan berbeda nyata dengan nilai BNT dan telah diberi tanda bintang. Namun demikian, konsentrasi perlakuan yang memiliki daya hambat paling efektif yaitu pada konsentrasi 100%, yaitu diperoleh nilai selisih rata-rata konsentrasi 100% lebih besar yaitu 15,78 dibandingkan konsentrasi yang lain.

Hasil Kelayakan Poster Sebagai Media Pembelajaran

Poster merupakan salah media satu pembelajaran ditampilkan dalam bentuk gambar dapat menentukan gagasan yang yang disederhanakan dan dibuat dalam ukuran besar,bertujuan untuk menarik perhatian, membujuk, memotivasi atau memperingatkan pada gagasan pokok, fakta atau peristiwa tertentu. Desain sebuah poster adalah perpaduan antara kesederhanaan serta dinamika. Berbagai warna yang mencolok serta kontras seringkali dipakai dalam poster.

Pembuatan media pembelajaran berupa poster yang memuat hasil penelitian terlebih dahulu dilakukan dengan mendesain poster, dilanjutkan dengan validasi oleh tim ahli, yaitu ahli isi, ahli desain dan ahli media untuk mengetahui kelemahan-kelemahan dari poster tersebut. Poster yang telah diperbaiki sesuai saran tim ahli kemudian diuji cobakan kepada mahasiswa Program Studi Pendidikan Biologiyang akan melakukan penilaian kelayakan media poster ini. Mahasiswa yang dipilih adalah mahasiswa yang telah memprogram matakuliah Mikrobiologi Dasar yaitu angkatan 2012 sebanyak 25 orang.

Berdasarkan hasil presentasi yang diperoleh dari dosen sebagai ahli isi 75% artinya poster tersebut cukup layak untuk digunakan, ahli desain 85,33% artinya poster tersebut layak untuk digunakan, ahli media diperoleh hasil 58,57% artinya poster tersebut cukup layak untuk digunakan. Hasil penilaian poster yang dilakukan oleh mahasiswa, menyatakan bahwa media pembelajaran berupa poster tersebut layak digunakan sebagai media pembelajaran dan dapat menunjang proses pembelajaran dengan persentase 81,9%.

KESIMPULAN

Berdasarkan hasil penelitian yang telah dilakukan, dapat disimpulkan bahwa:

- 1) Ekstrak daun jambu biji (*Psidium guajava* L.) memiliki daya hambat terhadap pertumbuhan bakteri *Vibrio cholerae*.
- 2) Ekstrak daun jambu biji (*Psidium guajava* L.) bersifat *Minimum Inhibitory Concentration* (MIC) pada konsentrasi 25% atau bersifat bakteriostatik.
- 3) Ekstrak daun jambu biji (*Psidium guajava* L.) pada konsentrasi 75% dapat membunuh bakteri *Vibrio cholerae* bersifat bakteriosidal *Minimum Baktericidal Concentration* (MBC)..
- 4) Hasil penelitian layak dijadikan sebagai media pembelajaran dalam bentuk poster dengan rata-rata presentase kelayakan yaitu 81,9%.

DAFTAR PUSTAKA

- Ardiansyah. (2005). Daun Beluntas Sebagai Bahan Antibakteri dan Antioksidan. Artikel IPTEK-Bidang Biologi, Pangan dan Kesehatan.
- Arikunto, S. (2002). *Prosedur Penelitian Suatu Pendekatan Praktek*. Edisi Revisi V. Jakarta: PT. Rineka Cipta.

- Dzulkarnain B, Sundari D Chozin A, (1996). *Tanaman Obat Bersifat Antibakteri Di Indonesia*. Jakarta: Cermin Dunia Kedokteran.
- Gomez, K A dan Gomez, A. A (1995). *Prosedur Statistik Untuk Penelitian Pertanian*. Jakarta: Universitas Indonesia.
- Johnson, T. R and Case, C. L. (1999). *Laboratory Experiments in Microbiologi Fiith Edition*. California: The Banjamin/Cummings Publishing Company, Inc.
- Joseph, B., and Priya, R. M. (2011). Phytochemical dan Pharmaceutical aspects of Psidium Guajava (L.) Essential Oil: A Riview. Res. dalam jounal *J. Med. Plant*. 5 (4): 432-442.
- Manoi, F., dan Nova, K. N. (2008). "Potensi Jambu Biji Sebagai Tanama nObat, Penelitian dan Pengembangan Tanaman Industri". Jurnal Badan Penelitian dan Pengembangan Pertanian Pusat Penelitian dan Pengembangan Perkebunan. 14, (2), 5-9.
- Matson. J.S., J.H. Withey and V.J. Dirita. (2007).

 Regulatory Networks Controlling *Vibrio cholerae* Virulence Gene Expression. jurnal *American Society For Microbiology*: 64 (4): 5542-5549.
- Pelczar, M.J dan Chan. (1988). *Dasar-dasar mikrobiologi*. Jakarta: Universitas Indonesia.
- Soemarsono. (1996). *Buku Ajar Penyakit dalam Kolera*, jakarta, FKUI.